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FOREWORD 

This  report  presents  a method for  leeside crossflow separation modeling 
in  Euler space-marching computations.    Description of the method and 
validation comparisons for a tangent-ogive body  at  supersonic speeds  at  low to 
intermediate angles of incidence are included. 
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INTRODUCTION 

The Euler equations provide an efficient means for supersonic flow 
computations and are widely used in aircraft and missile aerodynamic 
performance studies. The viscous effects in such studies are often of 
secondary importance and skin friction can be computed separately and added to 
inviscid results. However, in cases involving slender bodies or highly swept 
wings at incidence, the leeside flow structure is strongly influenced by the 
viscous effects. Such effects need to be included in the main computational 
process. 

While the Navier-Stokes equations provide a rigorous approach to the 
viscous flow problem, the solutions available at present are too costly for 
many engineering-type aerodynamic computations. Accordingly, interest in 
using and developing viscous modeling for Euler equations persists. 

Of particular interest at present is the leeside region of slender bodies 
at incidence. The flow structure in such a region is strongly influenced by 
crossflow separation and is dominated partly by the crossflow shock and partly 
by the viscous boundary layer at the surface. While the crossflow shock and 
its effects are generally accounted for by the Euler equations, the viscous 
boundary layer effects need to be included within the Euler computation 
through special modeling. One method is to prescribe the crossflow separation 
point using an experimental data base and then numerically simulate such 
separation by the application of additional constraints.■'• »^ From the limited 
data available, this seems to bring the overall leeside flow structure into 
better agreement with experiment. However, this method requires a prior 
knowledge of the location of the separation point and erratic surface pressure 
values often occur near the prescribed separation. 

To avoid the above difficulties a different approach is described in the 
present report. Instead of being rigidly prescribed, separation is allowed to 
take place in conformance to the leeside circulation level, which is augmented 
by suppressing the crossflow velocity near the surface. A simple method for 
such augmentation has been developed and is shown to be valid over a range of 
Mach numbers and angles of incidence.  In this report the algorithm for a 
tangent-ogive-cylinder body is described and comparisons of numerical and 
experimental data of the surface pressure distributions, local flow 
angularities and also of aerodynamic force coefficients are presented. 
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METHOD OF APPROACH 

In an inviscid computation, the crossflow shock generally occurs farther 
leeward than is experimentally observed. It is accompanied by a sharp 
pressure rise which is not found experimentally.  In an equivalent viscous 
case the shock interacts with the boundary layer and is diffused and weakened 
at the surface. The location of the shock is altered by this interaction, as 
well as by the crossflow circulation that is generated by the boundary 
layer. To bring the leeside flow structure in closer agreement with the 
viscous case, modeling of the boundary layer is necessary. In the present 
effort this was undertaken by utilizing available experimental data and 
generating numerical data with the NSWC SWINT code (Ref. 3). The flow 
conditions of primary interest vvere low-to-intermediate supersonic Mach 
numbers (f1 < 5) and angles of attack of up to about 20 degrees. Model 
geometries consisted mostly of sharp-tip tangent-ogive cylinders, 
approximately ten diameters long. The boundary layers of the experimental 
data were in the turbulent range. 

Initially, a no-slip surface boundary was applied in the crossflow 
direction. This diffused the crossflow shock at the surface, but also raised 
the pressure on the windward side of the model. To correct this, the no-slip 
type boundary was replaced by crossflow velocity clipping. Here the crossflow 
velocity was reduced to ensure that the Mach number of the velocity component 
in the crossflow plane did not exceed the value M^^. Clipping was applied 
both on and near the model surface using the constraint 

M„o = 0.145 • /^ ° (r/b)^ 'CR 

where 

b = body radius 
r = radial distance 
a = body angle of incidence, deg 

Clipping does not change static pressure (p) or density (p), and thus enthalpy 
(h (p, p)) and entropy (s (p, p)) are also unchanged. The total stagnation 
enthalpy constraint is satisfied by re-defining the axial velocity component, 
w, as follows: 

w = 2(HQ - h) - u2 - v^ 

where H. = total stagnation enthalpy 
h = enthalpy 
u = radial velocity component 
v = circumferential velocity component. 

The update changes for application of this algorithm in the NSWC SWINT code 
are given in the Appendix. 

The above algorithm performs well over a range of freestream Mach numbers 
and angles of incidence, as will be shown later in this report. Freestream 
Reynolds number is likely to have a significant effect on crossflow separation 
and leeside surface pressures, particularly in the transitional boundary layer 
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range at low supersonic Mach numbers (e.g., see Ref. 4). It is not included 
as a parameter in the present algorithm because of inadequate experimental 
data for verification. The present algorithm is intended for turbulent, high 
Reynolds number cases. 

VALIDATION 

Crossflow velocity clipping has a strong effect on the crossflow velocity 
profiles, as is illustrated in Fig. 1. In the windward region {<i> =  60 deg.), 
the difference between the inviscid and clipped profiles is small. On the 
leeside, ahead of the inviscid crossflow shock (^ =  120 deg.), clipping 
greatly reduces the crossflow velocity near the model. Farther leeward ((j) = 
160 deg.), clipping produces a vortex which results in an increased region of 
reversed crossflow velocity. 

The effect of crossflow velocity clipping on the surface pressure 
coefficient is shown in Figs. 2A to 2H. Longitudinal and circumferential 
comparisons with inviscid calculations and experimental data are included for 
Mach numbers from 1.98 to 4.5. The longitudinal variations are for the 
leeside plane ahead of the crossflow shock (for inviscid computations). The 
circumferential profiles are  near the end of the model. The figures show 
crossflow velocity clipping to be very effective in bringing the inviscid 
surface pressures closer to experimental results, particularly at lower 
supersonic speeds (M < 4.5). Figure 2A, for example, shows that 
at M = 1.98, a = 15 deg, the inviscid surface pressure, along the 
longitudinal plane at ^ = 105 deg, downstream of the forebody, deviates 
severely from the experimental results. Suppression of the crossflow velocity 
brings the computed pressures in much better agreement with experiment. In 
the circumferential direction (Fig. 2R) the inviscid results indicate an over- 
expansion and then a strong crossflow shock, while the modified crossflow 
pressures follow the experimental data more closely. Figures 2C, 2D and 2E, 
2F show similar improvements in longitudinal and circumferential pressure 
profiles for Mach numbers of 2.3 and 2.96. Figures 2G and 2H show that at 
Mach 4.63 the differences in leeside surface pressures are less severe, but 
that the present modification method still offers improvement. 

Comparison of the model normal force and pitching moment coefficients are 
shown in Figures 3A to 3D. The effect of crossflow clipping on the integrated 
surface pressures is also favorable, but less pronounced. 

Clipping brings the inviscid results closer to experiment by increasing 
the circulation and creating a leeside vortex that is similar to one formed by 
the boundary layer separation and roll-up. Figure 4A to 4D illustrate the 
computed leeside flow fields with and without clipping. A comparison between 
the measured and computed downwash angles is shown in Figs. 5A to 5D. The 
illustrated profiles are  taken along the horizontal line passing through the 
center of the experimentally observed vortex (Fig. 5A). Computed results are 
in reasonable agreement with experiment. 

Figures 6 to 11 illustrate the computed and measured normal force on a 
deflected fin attached to a tangent-ogive body. Both inviscid and clipped 
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results are shown with the fin located at different body roll positions. 
Variations in computed inviscid and clipped flow properties upstream of the 
fin are illustrated in Figs. 7 and 8A to 8H. 

Leeside fin force data computed with clipping at Mach 2 (Figs. 9A to 9E) 
are in better agreement with experiment than when computed without it. On the 
windward side little difference is noted. Similar observations can be made 
for the Mach 3 flow (Figs.lOA to lOF). At Mach 4.5 results are given in Figs. 
IIA to IID. 

CONCLUDING REMARKS 

A simple method has been developed to model crossflow separation for 
inviscid (Euler type) computations by clipping the crossflow velocity near the 
body surface. The method has been validated for a tangent-ogive-cylinder body 
of circular cross-section and shown to be useful at supersonic speeds at low 
to intermediate angles of incidence (M < 5, a < 20 deg). At low Mach numbers 
(M < 3), the method offers a significant improvement in the inviscid leeside 
surface pressure distributions and also yields improved prediction of 
aerodynamic coefficient. At higher Mach numbers, especially at higher angles 
of attack, the leeside pressure becomes very low making such modeling of 
little interest in body or fin force computations. Clipping also improves the 
robustness of a space-marching type computation by suppressing the crossflow 
shock. Further investigation of this method, especially its application to 
bodies of non-circular cross-section is considered warranted. 
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APPENDIX 

Update Inputs for SWINT 

*IDENT CLIP 
*I DECODE .60 
C    INPUT BODY ANGLE OF ATTACK (DEG) AND Z DISTANCE AT WHICH TO START 
C    CLIPPING 

ATTACK= 
ZNCL= 

t 
CC1=.145*S0RT(ATTACK) 
CC2=1.0 
XW=CC1*CC2 
IF (Z.LT.ZNCL) GOTO 1314 
CV(3,1,M)=SIGN(AMIN1(S0RT(ASQ(1,M))*XW 

1   ,ABS(CV(3,1,M))),CV(3,1,M)) 
U3=CV(3,1,M) 

1314 CONTINUE 
*I DECODE.173 

IF (Z.LT.ZNCL) GOTO 39 
XRC=.25 
XRS=B(M)+XRC*(C(M)-B(M)) 
IF (R(N,M).GT.XRS) GOTO 39 
CC2=(R(N,M)/B(M))**3 
XW=CC1*CC2 
VUR=VNM/UNM 
VK=AMIN1(AS0(N,M)*XW*XW,VK) 

C    NEW VELOCITY COMPONENTS AND CVS 
UNM=SIGN(SQRT(VK/(1.+VUR*VUR)),UNM) 
VNM=UNM*VUR 
CV(3,N,M)=UNM*U1 
CV(4,N,M)=VNM*U1 

39 CONTINUE 
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